Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type
§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Definition 2.1-1 Given a random experiment with an outcome space S, a function X that assigns one and only one real number $X(S)=x$ to each element S in S is called a random variable.
The space of X is the set of real numbers $\{x: X(s)=x, s \in S\}$, where $s \in S$ means that the element S belongs to the set S.

Example 2.1-1 In the experiment of tossing a coin once, we might define the r.v. X as

$$
X(H)=1 \quad \text { and } \quad X(T)=0 .
$$

Note that we could also define another r.v., say Y or Z, with

$$
Y(H)=0, Y(T)=1 \quad \text { or } \quad Z(H)=0, Z(T)=0 .
$$

Example 2.1-2 Consider an experiment in which a person is selected at random from some population and her height in inches is measured. This height is a random variable.

Events defined by random variables

If X is a r.v. and x is a fixed real number, we can define the event $(X=x)$ as

$$
(X=x)=\{s: X(s)=x\}
$$

Similarly, for fixed numbers x, x_{1}, and x_{2}, we can define the following events:

$$
\begin{aligned}
(X \leq x) & =\{s: X(s) \leq x\} \\
(X>x) & =\{s: X(s)>x\} \\
\left(x_{1}<X \leq x_{2}\right) & =\left\{s: x_{1}<X(s) \leq x_{2}\right\}
\end{aligned}
$$

These events have probabilities that are denoted by

$$
\begin{aligned}
\mathbb{P}(X=x) & =\mathbb{P}\{s: X(s)=x\} \\
\mathbb{P}(X \leq x) & =\mathbb{P}\{s: X(s) \leq x\} \\
\mathbb{P}(X>x) & =\mathbb{P}\{s: X(s)>x\} \\
\mathbb{P}\left(x_{1}<X \leq x_{2}\right) & =\mathbb{P}\left\{s: x_{1}<X(s) \leq x_{2}\right\} \\
\mathbb{P}(X \in C) & =\mathbb{P}(s: X(s) \in C) .
\end{aligned}
$$

Definition 2.1-2 Let X be a random variable. The distribution of X is the collection of all probabilities of the form $\mathbb{P}(X \in C)$ for all sets C of real numbers such that $\{X \in C\}$ is an event.

Example 2.1-3 In the experiment of tossing a fair coin three times, the sample space S, consists of eight equally likely sample points $S=\{H H H, \ldots, T T T\}$. If X is the r.v. giving the number of heads obtained, find the distribution of X.

Definition 2.1-3 A random variable X is called discrete if it takes a finite or countable number (sequence) of values:

$$
X \in\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

It is completely described by telling the probability of each outcome. Distribution defined by:

$$
\mathbb{P}\left(X=x_{k}\right)=f\left(x_{k}\right), \quad k=1,2, \cdots
$$

is called the probability mass function (p.m.f.) of the discrete r.v.

Definition 2.1-4 The closure of the set $\{x: f(x)>0\}$ is called the support of (the distribution of) X.

Theorem 2.1-1 (Properties of probability mass function) Let X be a discrete r.v. It is p.m.f. $f(x)=\mathbb{P}(X=x)$ satisfies the following properties:
(a) $f(x) \geq 0$, for all $x \in S$;
(b) $\sum_{x \in S} f(x)=1$;
(c) $\mathbb{P}(X \in A)=\sum_{x \in A} f(x)$ where $A \subset S$.

Definition 2.1-5 (Cumulative distribution function) We call the function defined by

$$
F(x)=\mathbb{P}(X \leq x), \quad-\infty<x<\infty
$$

the cumulative distribution function and abbreviate it as $c d f$.

Definition 2.1-6 When a pmf is constant on the space or support, we say that the distribution is uniform over that space.

Example 2.1-4 Let X be a discrete r.v. over a finite number of values $\{1,2,3, \ldots, m\}$ with the pmf:

$$
f(x)=\frac{1}{m}, \quad x=1,2,3, \cdots, m
$$

Then X is uniform over $\{1,2,3, \ldots, m\}$. Its cdf is given by

$$
F(x)=\mathbb{P}(X \leq x)= \begin{cases}0, & x<1 \\ \frac{k}{m}, & k \leq x<k+1 \\ 1, & m \leq x\end{cases}
$$

This is a (right-continuous) step function. Draw it...

Example 2.1-5 Let

$$
f(x)= \begin{cases}\frac{3}{4}\left(\frac{1}{4}\right)^{x} & \text { if } x=0,1,2, \cdots \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that the function $f(x)$ defined by is a pmf of a discrete r.v. X.
(b) Find (i) $f(2)=\mathbb{P}(X=2)$; (ii) $\mathbb{P}(X \leq 2)$; (iii) $\mathbb{P}(X \geq 1)$.

Example 2.1-6 Let X be the number of accidents per week in a factory. Let the pmf of X be

$$
f(x)=\frac{1}{(x+1)(x+2)}, x=0,1,2, \cdots
$$

Find the conditional probability of $X \geq 4$, given that $X \geq 1$.

